Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors.
نویسندگان
چکیده
The myelodysplastic syndromes (MDSs) are collections of heterogeneous hematologic diseases characterized by refractory cytopenias as a result of ineffective hematopoiesis. Development of effective treatments has been impeded by limited insights into any unifying pathogenic pathways. We provide evidence that the p38 MAP kinase is constitutively activated or phosphorylated in MDS bone marrows. Such activation is uniformly observed in varied morphologic subtypes of low-risk MDS and correlates with enhanced apoptosis observed in MDS hematopoietic progenitors. Most importantly, pharmacologic inhibition of p38alpha by a novel small molecule inhibitor, SCIO-469, decreases apoptosis in MDS CD34+ progenitors and leads to dose-dependant increases in erythroid and myeloid colony formation. Down-regulation of the dominant p38alpha isoform by siRNA also leads to enhancement of hematopoiesis in MDS bone marrow progenitors in vitro. These data implicate p38 MAPK in the pathobiology of ineffective hematopoiesis in lowrisk MDS and provide a strong rationale for clinical investigation of SCIO-469 in MDS.
منابع مشابه
Role of the p38 mitogen-activated protein kinase pathway in cytokine-mediated hematopoietic suppression in myelodysplastic syndromes.
The p38 mitogen-activated protein kinase (MAPK) pathway is activated by IFNs and other cytokines to mediate signals for important cellular functions, including transcriptional regulation and apoptosis. We examined the role of the p38 pathway in the generation of the effects of myelosuppressive cytokines on human hematopoiesis. Pharmacologic inhibition of p38 using BIX-01208 resulted in reversal...
متن کاملp38 mitogen-activated protein kinase has different degrees of activation in myeloproliferative disorders and myelodysplastic syndromes.
The goal of the present study was to evaluate the activation patterns of p38 mitogen-activated protein kinase (MAPK) in myeloproliferative disorders (MPDs) and myelodysplastic syndromes (MDSs). Phosphorylated (activated) p38 MAPK was analyzed immunohistochemically in formalin-fixed decalcified bone marrow core biopsy specimens from 32 MPD, 33 MDS, and 11 control cases. Moderate p38 activation w...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملImmunologic aspects of hypoplastic myelodysplastic syndrome.
The pathophysiology of myelodysplastic syndromes (MDS) is multiple, complex, and poorly understood. In some cases of MDS, especially those in which the bone marrow is hypocellular, there is increasing experimental and clinical indication that an immune-mediated damage to hematopoietic precursors and changes in the hematopoiesis-supporting microenvironment contribute to disease development. Incr...
متن کاملActivation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-beta on normal hematopoiesis.
Type I interferons (IFNs) are potent regulators of normal hematopoiesis in vitro and in vivo, but the mechanisms by which they suppress hematopoietic progenitor cell growth and differentiation are not known. In the present study we provide evidence that IFN alpha and IFN beta induce phosphorylation of the p38 mitogen-activated protein (Map) kinase in CD34+-derived primitive human hematopoietic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 108 13 شماره
صفحات -
تاریخ انتشار 2006